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SUMMARY 

Though hierarchy is commonly invoked in descriptions of motor cortical function, its presence and 

manifestation in firing patterns remain poorly resolved. Here we use optogenetic inactivation to 

demonstrate that short-latency influence between forelimb premotor and primary motor cortices 

is asymmetric during reaching in mice, demonstrating a partial hierarchy between the endogenous 

activity in each region. Multi-region recordings revealed that some activity is captured by similar 

but delayed patterns where either region’s activity leads, with premotor activity leading more. Yet 

firing in each region is dominated by patterns shared between regions and is equally predictive of 

firing in the other region at the single-neuron level. In dual-region network models fit to data, 

regions differed in their dependence on across-region input, rather than the amount of such input 

they received. Our results indicate that motor cortical hierarchy, while present, may not be 

exposed when inferring interactions between populations from firing patterns alone. 
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INTRODUCTION 

A hierarchical organization characterized by feedforward influence between neuronal populations 

is commonly imputed to neural systems1-3. In the motor system, a range of observations spanning 

anatomy4,5, lesion6,7, activity8,9, and activity perturbation10,11 have been interpreted as reflective of 

a hierarchical organization in which premotor regions plan movements and primary motor cortex 

executes them12,13. A similar range of observations, in particular that of substantial premotor 

projections to brainstem and spinal cord14-16, interconnection between premotor and primary 

motor cortices17,18, and activity related to movement planning in primary motor cortex and spinal 

cord19,20, inform an updated view of a partial hierarchy21-23. In this view, premotor and primary 

motor cortices interact and each drive downstream motor circuits, though primary motor cortex 

exerts comparatively more of its influence through its descending projections.  

However, technical challenges have precluded demonstration of a hierarchy between 

premotor and primary motor cortices mediated by their naturally-occurring (endogenous) firing 

patterns. It is commonly assumed that these endogenous firing patterns will exhibit an asymmetric 

reciprocal influence, with activity in premotor cortex exerting a larger influence on primary motor 

cortex than vice versa, but existing observations have not yet resolved such an asymmetry. 

Notions of hierarchy are informed by observations like those of asymmetric effects on each region 

from electrical stimulation, lesion, or pharmacological inactivation of the other region24,25; of 

differing laminar targets of projections between regions26,27; and of differing degrees of activity 

related to movement preparation28-30. Yet such observations do not necessarily imply asymmetric 

reciprocal influence of endogenous activity on the fast timescales of synaptic communication 

between regions (oligosynaptic timescales). Moreover, a number of observations are consistent 

with a more symmetric influence between premotor and primary motor cortices31-33.  

The ambiguity about hierarchy has in turn prevented resolution of how it manifests in firing 

patterns. Movement-related activity is frequently observed to be higher earlier prior to movement 

in premotor cortex as compared to that in primary motor cortex9,34,35. This has been interpreted 
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as reflecting earlier activity onset in premotor cortex and a feedforward influence from premotor 

to primary motor cortex. More generally, it is frequently assumed that feedforward signal flow from 

one region to another can manifest as the appearance of an activity pattern in one region and 

later in the other at a latency reflecting axonal conduction and synaptic transmission36-39. 

However, a diverse array of patterns are seen in movement-related activity in both premotor and 

primary motor cortex40, and it remains to be seen how well activity in these regions can be 

captured by similar but temporally offset (delayed) activity patterns. Moreover, it has also been 

proposed that existing observations of higher earlier activity in premotor cortex compared to that 

in primary motor cortex could reflect involvement of each region in somewhat different aspects of 

movement, rather than feedforward influence41,42.   

Feedforward influence between regions is also thought to manifest in the ability to predict 

firing patterns in one region from those in the other. The application of time series prediction 

methods for discerning functional influence between neurons43,44 is grounded in the notion that 

feedforward influence leads to predictive relationships between firing patterns. We might expect 

that a partial hierarchy between premotor and primary motor cortices would manifest as an 

asymmetry in firing pattern predictivity, where premotor activity patterns share a stronger 

predictive relationship with subsequent primary motor activity patterns than vice versa. However, 

local circuit dynamics can also be expected to play a substantial role in determining firing patterns. 

Recent theoretical results suggest that local circuit dynamics can be the primary determinant of 

firing patterns, even in the presence of substantial across-region input like that between motor 

cortical regions45,46. Thus, whether functional hierarchy manifests in firing pattern predictivity at 

the scale of brain regions within neural systems remains unresolved.  

We sought to establish (1) hierarchy between premotor and primary motor cortices 

mediated by their endogenous firing patterns, and (2) how any such hierarchy manifests in the 

firing patterns in each region. To address the former, during reaching in mice we examined 

interactions between the forelimb premotor cortex (rostral forelimb area, RFA) and primary motor 
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cortex (caudal forelimb area, CFA). We used rapid optogenetic inactivation of either cortical region 

while simultaneously recording with large-scale multielectrode arrays (Neuropixels47) in the other 

region. We found that influence between regions is asymmetric, indicating a partial functional 

hierarchy. To address (2), we then recorded simultaneously with Neuropixels in both regions and 

performed a range of analyses on measured firing patterns. Consistent with partial hierarchy, we 

found that some activity can be captured by similar but delayed patterns in which either region’s 

activity led, with RFA activity leading more often. However, we also found a high degree of 

similarity between firing patterns in both regions and that firing patterns in each region had similar 

predictive relationships with subsequent firing in the other region at the single-neuron level. In 

dual-region network models fit to our activity measurements, regions differed in their dependence 

on across-region input, rather than the amount of such input they received. These results suggest 

that motor cortical hierarchy, while present, is not reflected in firing patterns as often assumed. 

This has important implications for contemporary attempts to infer interactions between 

populations from activity patterns alone. 

 

 

RESULTS 

RFA and CFA activity during directional reaching 

We first trained mice to perform a voluntary limb movement task that we expect to depend on 

activity in both RFA and CFA. Building on recent work48, we developed a head-fixed directional 

reaching paradigm in which mice learn to rest their right hand on a rung and then reach to one of 

four spouts to grab a water droplet (Figure 1A,B; Figure S1A; Movies S1,2). Rung touch 

illuminates a visual cue indicating the spout where the droplet will be dispensed after a 

subsequent (1-3 s later) auditory ‘Go’ cue. Mice were acclimated to head fixation and trained to 

perform the task using methods similar to those previously described, a process which generally 

took between 10 and 20 daily sessions. Spout touches were detected with capacitive touch 
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sensors during training, and with infrared beam sensors during subsequent neural recordings 

described below. To measure motor output during reaching, electromyographic (EMG) electrodes 

were chronically implanted into four muscle groups in the right forelimb: elbow flexors and 

extensors, and wrist flexors and extensors49 (Figure 1C). 

We next aimed to show that RFA and CFA output influence muscle activity at oligosynaptic 

latency during reaching. In trained VGAT-ChR2-EYFP mice50, we briefly projected a small spot of 

blue light (50 ms, 1.5 mm diameter, 9 mW/mm2) onto the surface of left RFA or CFA, triggered on 

reach onset. This approach silences the vast majority of endogenous activity in projection neurons 

at least down through layer 549,51, including those projecting to the brainstem and spinal cord. 

Activity was simultaneously recorded from right forelimb muscles to measure effects. For 

inactivations of either region, the absolute difference in activity summed across all muscles 

deviated from 0 very quickly after light onset (Figure 1D,E). This absolute difference was 

significantly different from zero when averaged over the first 25, 50, and 100 ms after light onset 

(Figure 1F; for RFA, p = 9.6 x 10-8 for 25 ms,  p = 1.3 x 10-10 for 50 ms, and p = 7.2 x 10-27 for 100 

ms; for CFA, p = 3.0 x 10-5 for 25 ms, p = 2.9 x 10-12 for 50 ms, and p = 2.1 x 10-32 for 100 ms; 

one-tailed t-tests). This indicates that both RFA and CFA exert oligosynaptic influence on muscles 

during reaching.  
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Figure 1. RFA and CFA activity during directional reaching in mice.  

(A) Schematic depicting the directional reaching task.  

(B) Schematic depicting the time course of experimental control signals and muscle activity during 

the directional reaching task.  
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(C) Trial-averaged activity of four recorded muscles (black) ± SEM (gray, n=176 trials) for one 

mouse during directional reaching towards each of four spouts. Separate averages are aligned 

on reach onset (Reach) or spout contact (Grasp). Vertical scale bar in (C) and (D) reflects 

standard deviation of Z-scored muscle activity.  

(D) Mean muscle activity ± SEM for trials without (black) or with inactivation (50 ms, cyan bar) of 

RFA (top, magenta) or CFA (bottom, blue) triggered on reach onset. Left image shows the position 

of the light stimulus on RFA and CFA.  

(E) Mean ± SEM absolute difference between inactivation and control trial averages across all 

recorded muscles (n = 12 from 3 animals) for inactivation (50 ms, cyan bar) of RFA or CFA. For 

baseline subtraction, control trials were resampled to estimate the baseline difference expected 

by chance.  

(F) Absolute difference between inactivation and control trials averaged over three epochs after 

trial/light onset, for individual animals (circles) and the mean across animals (black bars).   
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We next examined whether neuronal firing patterns in the premotor RFA and primary 

motor CFA showed a commonly observed feature: larger and earlier activity in the premotor 

region. We performed simultaneous large-scale multielectrode array (Neuropixel) recordings 

across cortical layers in both CFA and RFA in mice performing our reaching task (21 sessions 

across six mice, 74-293 qualifying single units per session in CFA, median 150; 17-194 per 

session in RFA, median 105; Figure 2A-C). As expected, the majority of recorded neurons in each 

region exhibited an elevated average firing rate during movement as compared to periods when 

forelimb muscles were quiescent (Figure 2D-E), and the firing rate time series of a large fraction 

of neurons in each region were significantly correlated with the activity time series of at least one 

forelimb muscle (Figure 2F).  

 We then quantified the activity change around reaching onset in each region. We used 

the absolute change in trial-averaged neural activity state from a pre-reach baseline summed over 

top principal components (PCs) that together captured >95% of the variance (2-3 PCs). We 

measured the time at which the activity state rose above baseline preceding reach onset, which 

occurred earlier in RFA than in CFA (Figure 2H, p = 0.031, one-tailed signed rank test). The mean 

time for RFA was 53.9 ms earlier than in CFA. We also found that the fraction of activity variance 

preceding movement onset was significantly higher for RFA than CFA (Figure 2I, p = 0.016, one-

tailed signed rank test). Thus, in our reaching paradigm, RFA does exhibit larger and earlier pre-

movement activity compared to CFA.  
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Figure 2. RFA and CFA activity during reaching.  

(A) Mouse brain schematic depicting recordings in RFA and CFA.  

(B) Histograms showing the depth below pia of single unit isolations (neurons) recorded with 

Neuropixels and extracted with Kilosort. Dotted vertical lines depict where the cutoff for the bottom 

of each cortical region was defined.  

(C) Example of spike rasters (top) and muscle activity (bottom) recorded in one mouse during 

reach performance. Arrowheads indicate each onset (R) or spout contact (G).  

(D),(E) Scatter plots of the firing rates for neurons recorded in CFA (D) and RFA (E) during epochs 

when mice are activating their forelimb muscles, versus periods when muscles are quiescent, 

separated for neurons having wide and narrow waveforms. 

(F) The fractions of neurons recorded in both CFA and RFA whose firing rate time series was 

significantly correlated with that of at least one muscle (p-value threshold = 0.05). 

(G) For one mouse, normalized absolute activity change from baseline summed across the top 

three principal components (PCs) for all recorded RFA or CFA neurons, and the top PC for muscle 

activity. Circles indicate time of detected activity onset.  

(H) Time from reach onset at which the activity change from baseline summed across the top 

three PCs for RFA (magenta) or CFA (blue) neurons rose above a low threshold (n = 6 mice).  
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(I) The fraction of activity variance from 150 ms before reach onset to 150 ms after it that occurs 

before reach onset.  
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Asymmetric reciprocal influence of endogenous RFA and CFA activity 

We then sought to establish that the endogenous activity in RFA exerts a larger influence on CFA 

activity than vice versa. We inactivated RFA as described above while recording activity across 

layers with Neuropixels in CFA (Figure 3A-C, 13 sessions across three mice), or similarly 

inactivated CFA while recording in RFA (Figure 3D-F, 10 sessions across three mice). This will 

inactivate similarly-sized cortical regions that encompass all of RFA or most of CFA. Thus our 

approach provides a relatively comprehensive inactivation, enabling measurement of the 

influence each region has on neuronal firing in the other region. 

We sought to verify that ChR2 activation in VGAT+ neurons were negligible in the region 

being recorded but not directly inactivated. We modified the Stimulus-Associated spike Latency 

Test (SALT52) to test for significant effects of light on spike latency in the first 5 ms following light 

onset, specifically in narrow-waveform, putative inhibitory interneurons in the recorded region. For 

each neuron, this yielded a p-value reflecting the likelihood spike latency differences were due to 

chance (Figure S2A-D). The distribution of these p-values across all recording sessions was not 

significantly different from uniform, both for recordings in RFA and in CFA during inactivation of 

the other region (RFA: p = 0.22, n = 328 neurons; CFA: p =  0.13, n = 207 neurons; K-S test). We 

also observed that the effects on narrow-waveform neurons were similar in magnitude and time 

course to effects on wide-waveform, predominantly pyramidal neurons (Figure S2E-P). Thus we 

were not able to detect direct ChR2 activation effects on narrow-waveform neurons in the 

recorded region. 

Results indicated an asymmetry in the oligosynaptic functional influence between CFA 

and RFA. Control and inactivation trial averages showed a larger and longer lasting reduction in 

CFA firing upon RFA inactivation compared to the effect on RFA firing upon CFA inactivation 

(Figure 3A-F). To quantify the effect on firing in individual neurons, we computed the difference 

of control and inactivation trial averages 50 ms after light/trial onset using z-scored firing rates for 

each neuron. Distributions of these relative firing rate changes showed more cells with a larger 
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reduction in CFA compared to those in RFA, both for all neurons (Figure 3G) and for wide-

waveform, putative pyramidal neurons (Figure 3H). These distributions did show more RFA 

neurons responding with an increase in firing; however, the average absolute change in firing was 

also substantially larger for CFA neurons than RFA neurons, again both for all neurons (Figure 

3I) and the wide-waveform subset (Figure 3J). The average absolute change in firing was 

significantly larger whether calculated over the first 50 or 100 ms following light/trial onset, though 

it did not reach significance over the first 25 ms (Figure 3K,L; all neurons: 25 ms p  = 0.077, 50 

ms p  = 0.012, 100 ms p = 0.021; wide-waveform: 25 ms p  = 0.101, 50 ms p  = 0.027, 100 ms p 

= 0.022; one-tailed t-test). Thus it is not the case that the smaller effect of CFA inactivation on 

RFA activity is solely due to offsetting increases and decreases in the firing rates of different 

neurons. These results demonstrate that the endogenous activity in premotor and primary motor 

cortices exert asymmetric effects on one another, with RFA exerting a comparatively larger effect 

on CFA. We interpret this as a direct indication of functional hierarchy on oligosynaptic timescales.  
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Figure 3. Asymmetric reciprocal influence of endogenous RFA and CFA activity.  

(A-F) Schematics depicting inactivation and Neuropixel recording (A,D) and mean ± SEM firing 

rate time series for neurons from one animal (B,E) or all three animals (C,F) from inactivating RFA 

and recording CFA (A-C), or vice versa (D-F). The cyan bar indicates light on. The same number 

of cells were used from each animal in (C) and (F).  

(G),(H) Cumulative histograms of the difference between averaged z-scored firing rates for control 

and inactivation trials averaged from 45 to 55 ms after trial/light onset, for the top 50 highest firing 

rate neurons (G) or wide waveform neurons (H) from all animals (thick lines) or individual animals 

(thin lines).  

(I),(J) Mean absolute firing rate difference ± SEM between control and inactivation trial averages 

for all (I) and wide waveform (J) neurons recorded in the other area during RFA and CFA 

inactivation. Baseline subtraction enables negative values.  

(K),(L) Average absolute firing rate difference from light onset to 25, 50, and 100 ms after for all 

(K) and wide waveform (L) neurons, for individual animals (circles) and the mean across animals 

(black bars). 
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Premotor and primary motor cortical activity are highly similar during reaching 

We then examined how the asymmetric reciprocal influence between CFA and RFA manifests in 

the relationship between their firing patterns. We first assessed the overall similarity of firing 

patterns in the two regions using methods that decompose two sets of variables into pairs of 

components (linear combinations of the original variables) that are highly similar. We used both 

canonical correlation analysis (CCA53,54), which maximizes the correlation between the time 

courses for pairs of components, and partial least squares (PLS55), which maximizes the 

covariance of these time courses. Both methods were applied to matrices comprising the trial 

averaged firing rates for all neurons from a given animal. In these matrices, the separate averages 

aligned on reach onset and on grasp for reaches to each of the four spouts were concatenated 

(Figure 4A and S3A). This analysis was performed separately for each of 6 mice using all 

qualifying single units aggregated across sessions. 

CCA revealed that the vast majority of the trial-averaged activity variance in RFA and CFA 

is captured by components with nearly identical time series. On average, over 80% of activity in 

both regions is captured by components whose times series had Pearson correlations > 0.94 

(Figure 4B-D). We compared the cumulative activity variance captured by successive canonical 

variables with that captured by equivalent numbers of principal components (i.e. the maximum of 

any possible components). On average, the first ten canonical variables captured 92.2 ± 2.4% 

(mean ± s.e.m.) as much as the first ten principal components for CFA, and 92.6 ± 1.5% as much 

for RFA. PLS identified components that successively capture nearly the same amount of activity 

variance as corresponding principal components while still maximizing the covariance of 

component time series (Figure 4E,F). The first ten PLS components captured 98.7 ± 0.3% as 

much as the first ten principal components for CFA, and 98.2 ± 0.5% for RFA. Thus both methods 

produced a similar basic result: firing patterns in RFA and CFA en masse are remarkably similar. 

This similarity in firing patterns, coupled with the presence of descending projection neurons in 

both regions56, suggests redundant and collective influence on motor behavior. 
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In a functional hierarchy where one region’s activity rises earlier than another’s, we might 

expect the alignment between sets of firing patterns to be maximal when one set is lagged in time 

relative to the other. We thus assessed whether there was a time lag greater than 0 at which RFA 

and CFA activity patterns would best align. We found this was not the case for RFA and CFA 

activity during reaching. We shifted CFA activity in time relative to RFA activity by each integer 

value from -30 to 30 ms and recomputed CCA and PLS as above. In all cases, alignment quality 

was nearly identical: the average Pearson correlation for canonical variables was nearly constant 

for all lags tested (Figure 4G), as was the summed covariance of PLS component pairs (Figure 

S3B). However, control analyses in which we aligned CFA activity to itself, or to itself shifted by 

10 ms in time, revealed clear maxima in alignment quality at the expected lags (Figure S3C,D). 

Thus, the asymmetric reciprocal influence between RFA and CFA and the larger, earlier activity 

change in RFA do not imply a maximal alignment at a lag. 
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Figure 4. RFA and CFA firing patterns are highly similar.  

(A) From one animal, four canonical variables aligned at reach onset or spout contact (grasp) for 

reaches to each spout. Bottom row shows the corresponding time series for the first principal 

component of muscle activity.  

(B),(C) Mean ± SEM cumulative variance capture (n = 21 sessions) for canonical variables (color) 

and principal components (PCs, black) for RFA (B) and CFA (C) activity. Red annotations facilitate 

comparisons across B-D.  
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(D) Mean ± SEM Pearson correlation for canonical variable pairs.  

(E),(F) Mean ± SEM cumulative variance capture for PLS components (color) and principal 

components (PCs, black) for RFA (E) and CFA (F) activity.  

(G) Mean ± SEM Pearson correlation of CFA and RFA canonical variable pairs computed when 

shifting CFA activity relative to RFA activity, for the average over all pairs either without (purple) 

or with weighting each correlation value by the variance captured by the given pair (black).  
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An imbalance in activity patterns shared at a lag 

In a functional hierarchy, we might expect there to be activity patterns in the region exerting the 

larger across-region influence that then appear later in the second region because of synaptic 

time delays. We thus used a newly-developed dimensionality reduction method, Delay Latents 

Across Groups (DLAG36) that is designed to identify such patterns. We used DLAG to decompose 

simultaneously recorded CFA and RFA firing patterns into latent variables (components) that are 

either unique to activity in each region (within-region) or shared between regions at an arbitrary 

temporal lag (across-region). For sessions of simultaneous CFA and RFA recording during 

reaching, we decomposed each region’s activity into four across-region components (negative 

lags defined as RFA leading) and four within-region components.  

Figure 5A shows representative results from one mouse, plotting the lag and variance 

capture in each region for all across-region components identified for three sessions. Some 

across-region components had a lag that was not significantly different from zero according to a 

permutation-based statistical test36; these components were ignored in subsequent analysis. Here 

we focused analysis on 15 sessions across the six mice, excluding sessions with a lower number 

of trials, which hampered DLAG calculations. We also focused on across-region components with 

lags between -60 and 60 ms, on par with the difference between the pre-movement activity rise 

time in RFA and CFA (see above, 53.9 ms). We found that activity variance in each region could 

be captured by across-region components in which either CFA or RFA activity led with lags in this 

range (Figure 5B). This agrees with the breadth of results cited above that suggest bidirectional 

interaction between premotor and primary motor cortex. 

We then examined whether there was any significant bias towards across-region 

components in which RFA activity led. For across-region components with lags between -60 and 

60 ms, we found such a bias (Figure 5C). The median lag across-components was -16 ms. The 

distribution of median lags for individual sessions was significantly less than 0 (p = 0.021, one-

tailed Wilcoxon signed-rank test). The same bias toward negative lags remained when 
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considering all components having lags between -200 and 200 ms (Figure S4A). We considered 

whether this bias remained when accounting for how much variance each component captured 

the other region. It did, as the bias remained prominent when we weighted components by their 

variance capture in CFA (Figures 5D, S4B; mean variance-weight lag = -10.8 ms) or RFA (Figures 

5E, S4C; mean variance-weight lag = -13.4 ms). Thus, across-region activity components in which 

RFA activity led were more prominent than those in which CFA led. 

We then examined specifically whether, consistent with a functional hierarchy, across 

region components in which RFA activity led captured more activity variance in CFA than CFA-

led components captured for RFA. Variance capture in the lagging region by RFA-led and CFA-

led components indicated this was the case. The same held when repeating this analysis but 

varying either the number of within-region (Figure 5F) or across-region (Figure 5G) components, 

while holding the other fixed at four. The same again held when considering all components 

having lags between -200 and 200 ms (Figure S4D,E). We note here that the bias we observe 

here should not be due to CFA firing patterns being noisier, as firing rates were on average higher 

in CFA. Collectively, our results with DLAG reveal activity patterns shared at a lag between RFA 

and CFA, with a bias towards patterns in which RFA activity leads. 
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Figure 5. DLAG finds imbalance in variance capture by activity patterns shared at a lag 

(A) A scatter plot of the lags of all across-region activity components detected by DLAG versus 

their fractional variance capture in each region, for one mouse (3 sessions). Open circles reflect 

components where the lag was not significantly different from zero. Lines connect variance 

capture for individual components. 

(B) Fractional variance capture of CFA activity (left) and RFA activity (right) by across-region 

components in which CFA activity leads (CFA➤RFA) or RFA activity leads (RFA➤CFA), and by 

within-region components. Connected dots reflect individual mice (n = 6). 

(C) Histogram of DLAG component lags that were significantly different from zero and between -

60 and 60 ms, for all recording sessions. Red line indicates the median component lag. 
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(D),(E) Histogram of DLAG component lags weighted by the variance each component captures 

in CFA (D) or RFA (E), for all recording sessions. Red lines indicate the mean component lag 

after weighting by variance capture. 

(F),(G) Mean ± SEM fractional activity variance captured in the lagging region by DLAG 

components when the lag was significantly different from zero and between -60 and 60 ms, when 

varying the within-region (F) or the across-region (G) dimensionality (n = 15 sessions). 
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Symmetric firing pattern predictivity 

We then asked whether asymmetric reciprocal influence between CFA and RFA manifests in an 

imbalance in the ability to predict firing patterns in one region from those in the other at the single 

neuron level. Given the lack of consensus on how to assess this predictivity, for 

comprehensiveness we applied three metrics that each make different assumptions about how 

one firing pattern enables or improves prediction of another: point-process Granger causality44, 

transfer entropy43, and convergent cross mapping57. Though these methods can be used to probe 

for potential causal influence between neurons, we stress that we are not making causal claims 

here and are focusing only on what these metrics directly compute: how the firing of one neuron 

enables or improves prediction of firing in another. 

We computed each metric for pairs of neurons recorded simultaneously during reaching, 

one in each region, with one defined as source and the other as target. To focus attention on the 

timescale over which we expect oligosynaptic influence to manifest, we considered models that 

use source activity at different lags ranging up to 30 ms preceding firing in the target neuron and 

chose the lag that maximized predictivity. To focus calculations on cell pairs for which statistical 

power was greatest, we identified 10,000 pairs with the highest product of average firing rates. 

To avoid directional bias due to differing firing rates (CFA firing rates were slightly higher on 

average), we algorithmically adjusted this set of pairs to match the overall firing rate distributions 

for neurons used from each area (Figure S5A,B).  

In calculations of point-process Granger causality, two models are fit to the firing of a target 

neuron: one using the past history of all neurons in the ensemble, and another that excludes the 

source neuron. The difference in fit quality quantifies the unique prediction improvement provided 

by the source neuron, and a p-value is assigned that indicates the likelihood of a similar 

improvement by chance. Here the ensemble involved all CFA and RFA neurons from the given 

recording session that fell within the overall top 10,000 firing rate pairs. Models were fit to activity 

from a set of reach trials each spanning 200 ms before reach onset to 800 ms after. The 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2024. ; https://doi.org/10.1101/2023.09.23.559136doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.23.559136


24 
 

distributions of p-values for predictions in each direction (CFA source, RFA target, and vice versa) 

showed a skew toward zero and were significantly nonuniform (Figure 6A; KS tests, p < 10-10). 

This shows that for some fraction of pairs, source neuron activity did improve predictions of target 

neuron activity. However, the degree of skew toward zero was similar for both distributions, 

indicating that a similar fraction of pairs exhibited prediction improvements. We estimated the 

fraction of pairs showing prediction improvements from the p-value distributions58, finding a 

slightly larger fraction when the CFA neuron was the source (CFA source: 69% of pairs, RFA 

source: 60% of pairs). Furthermore, the degree of prediction improvement in each direction was 

similar, as distributions of model fit quality differences for pairs with p-values below a significance 

threshold were similar (Figure 6B). Interestingly, prediction improvement computed instead for 

pairs of neurons within each region were also fairly similar, though there were more large extreme 

values, potentially reflecting strongly coupled cells (Figure 6C).  

We found similar results with both transfer entropy and convergent cross mapping. 

Transfer entropy measures how well the spiking of the target neuron can be predicted when 

considering its past history as well as the past history of the source neuron. The better the source 

neuron’s past history improves the prediction of the target neuron’s spiking activity compared to 

the source neuron’s own past history alone, the higher the transfer entropy value. In this case, to 

increase our statistical power, rather than using the trial segments used for Granger causality 

calculations, we used spiking during all epochs of movement throughout a given recording 

session. To assign a p-value for each cell pair, we generated an empirical null distribution by 

recomputing transfer entropy values after many different circular permutations of the spike time 

series. Here again, p-value distributions for predictions in each direction showed a skew toward 

zero and were significantly nonuniform (Figure 6D; KS tests, p < 10-10), evidencing prediction 

improvement. The degree of skew toward zero here was very similar for both distributions. The 

estimated fraction of pairs showing prediction improvements was less than 1% different between 

distributions (CFA source: 29.4% of pairs, RFA source: 29.1% of pairs). The degree of prediction 
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improvement was similar in each direction (Figure 6E) and was fairly similar to that computed for 

pairs within each region (Figure 6F). 

Convergent cross mapping is designed to uncover casual interactions in a dynamical 

system with a weak to moderate deterministic component and where casual variables do not 

contain unique information. Here we used it to quantify how well the activity of the source neuron 

can be predicted by the historical dynamics of the target neuron. Cross mapping quality (“skill”) 

was computed for 5,000 high firing rate neuron pairs using a set of reach trials each spanning 

200 ms before reach onset to 800 ms after. P-value distributions for predictions in each direction 

again showed a skew toward zero and were significantly nonuniform (Figure 6G; KS tests, p < 10-

10), and the degree of skew toward zero was similar for both distributions. The estimated fraction 

of pairs showing prediction improvements was just 2.6% different between distributions (CFA 

source: 99.6% of pairs, RFA source: 97.0% of pairs). The degree of prediction improvement was 

similar in each direction (Figure 6H) and was fairly similar to that computed for pairs within each 

region (Figure 6I). Collectively, these results indicate that firing pattern predictivity computed for 

neuron pairs does not reflect an asymmetry like that seen in the actual influence of endogenous 

activity. 
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Figure 6. RFA and CFA firing pattern predictivity.  

(A,D,G) P-value distributions from calculations of Granger causality (A), transfer entropy (D), and 

convergent cross mapping (G) using firing patterns of across-region neuron pairs.  

(B,E,H) For across-region neuron pairs, distributions of metric values reflecting the improved 

prediction of target neuron firing using source neuron firing (B and E), or the improved prediction 

of source neuron firing using target neuron firing (H). Here and in (C,F,I), only values for which 

the corresponding p-value fell below a false discovery-corrected threshold (0.10) are included, 

and box plots on top show the minimum, 1st, 2nd, and 3rd quartile, and maximum values.  

(C,F,I) Distributions of metric values computed instead for within-region neuron pairs. 
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A network model recapitulates findings without asymmetric across-region input 

Finally, we sought to develop intuition about how the sort of asymmetric reciprocal influence 

between CFA and RFA we observed could arise from two coupled neuronal populations. One 

possibility is that asymmetric influence could depend on asymmetric across-region input, with 

RFA sending stronger input to CFA than vice versa. On the other hand, asymmetric influence 

could instead arise from a difference in the dependence of activity in each region on that across-

region input. In this scenario, differences between the local circuit dynamics in each region would 

cause a different degree of robustness to the loss of input from the other region.  

We thus constructed a recurrent network model to observe how it would capture our 

results. We built a network of two populations (“RFA” and “CFA”), each 80% excitatory and 20% 

inhibitory, with local recurrent (within-region) connectivity and sparser connectivity between 

populations (across-region) to align with experimental observations (Figure 7A). In response to a 

‘Go’ signal, the network generates a muscle activity output. We trained instances of the model to 

generate measured muscle activity (summed across all four muscles) and measured neural 

activity (summed across all neurons recorded in a given region), in three cases: recording from 

either region while inactivating the other, and paired recording of both regions without inactivation. 

For the two inactivation cases, an additional input was provided to inhibitory interneurons to mimic 

ChR2 stimulation. Measurements for each case were drawn from different animals and 30 model 

instances were computed from different random initial conditions. Both within-region and across-

region connection weights were free to vary during training. 

Analysis of fit results showed that indeed, networks do not capture the asymmetric 

influence we observed with greater input from “RFA” to “CFA.” Fit quality was very good, as 

measured neural and muscle activity were closely fit and individual model instances readily 

exhibited both the temporal offset in activity rise and the substantial asymmetry in inactivation 

effects (Figure 7B). Models collectively had slightly larger “RFA” to “CFA” across-region weights 

(Figure 7C). However, repeating fits while constraining across-region weights to be balanced on 
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average (“symmetric”) yielded very good fits, with only a 14% average increase in fit error (Figure 

7D,E). Most strikingly, the total amount of across-region input from each region, measured as the 

product of across-region weights and the activity of corresponding “presynaptic” neurons, was not 

higher for “RFA” to “CFA” connections, both for unconstrained and symmetric models (Figure 7F). 

The across-region input was actually larger on average in the opposite direction, regardless of 

the time window over which the input was summed. We also observed that the “RFA” network, 

which was more robust to the silencing of across-region input, had a higher average strength of 

within-region inhibitory connections (Figure 7G; unconstrained: p = 1.9 x 10-12, symmetric: p = 8.2 

x 10-4, two-tailed t-test). These results indicate that asymmetric reciprocal influence can emerge 

in these networks from local recurrent connectivity and the activity dynamics they engender. 
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Figure 7. Network modeling of RFA and CFA activity.  

(A) Schematic of the dual network model fit to activity measurements. 

(B) Illustration of fit quality for one instance of the model with unconstrained weights of across-

region synapses. In (B) and (D), cyan bars show the epochs of simulated inactivation.  

(C) Distribution of synaptic weights for all across-region connections from all instances of the 

unconstrained model. In (C),(D) and (F), box plots show the minimum, 1st, 2nd, and 3rd quartile, 

and maximum values.  

(D) Box plots for the distribution of error across 30 instances each of the unconstrained and 

constrained models. 

(E) Illustration of fit quality for one instance of the model with across-region weights constrained 

to be equal in each direction on average.  

(F) Distributions of summed across-region input (weights x activity) in each direction over different 

simulation epochs, for all instances of both the unconstrained and symmetric model types.  
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(G) Distributions of within-region excitatory (Excit) and inhibitory (Inhib) synaptic weights, for all 

instances of both the unconstrained and symmetric model types. 
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DISCUSSION 

Here we have explored the functional influence between the two main forelimb regions in mouse 

motor cortex, and its manifestations in firing patterns during reaching. Using relatively 

comprehensive, optogenetic inactivation of either CFA or RFA while recording neural activity in 

the other, we found an asymmetry in the functional influence between regions, one aligned with 

existing views of a partial hierarchy between forelimb regions. Analysis of simultaneously 

recorded activity patterns in both regions detected an asymmetry in the presence of activity 

patterns shared at a lag. However, we also found that activity patterns in each region were in 

general very similar, and equally predictive of one another at the single neuron level. Network 

models that capture population level firing features and the asymmetric reciprocal influence 

between regions did so without an asymmetry in the amount of across-region input. Our results 

suggest that motor cortical hierarchy, while present, is not reflected in motor cortical firing patterns 

as often assumed, and that firing patterns alone may not always clearly reflect the functional 

influence between regions.  

 

Functional hierarchy between forelimb regions 

To properly interpret our activity perturbation results, it is important to consider how the effects of 

inactivation on connected regions may arise. Both CFA and RFA receive input from a broad range 

of other cortical regions, and each project to a similarly broad range of regions26,59,60. We expect 

that the most numerous inputs to neurons in each region are locally derived. Local recurrent 

circuits can give rise to activity patterns that evolve over timescales equivalent to many synaptic 

delays. When we silence either region, activity is thus disrupted in diverse synaptic pathways 

leading to neurons in the other region, including pathways through intervening regions. These 

disruptions will influence activity at different latencies, depending on conduction delays and the 

number of intervening synapses. By silencing either region, we can measure something 

approaching the full influence of the given region on the other, albeit one mediated through diverse 
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synaptic paths. When assessing interactions between regions, we believe it can be important to 

account for this diversity of synaptic paths. Here we observed a significantly larger influence of 

RFA on CFA than vice versa on all timescales examined, indicating that an asymmetry in 

reciprocal influence is present across timescales. 

Our results highlight the dual determinants of inter-regional influence among brain regions: 

the balance of across-region input and the relative dependence of regions on that input. When 

we inactivate a particular region, the effects we observe in a downstream region will depend both 

on how much input it received from synaptic paths originating in the inactivated region and how 

robust firing patterns in the downstream region are to the loss of this input. Though classical 

descriptions emphasized the feedforward synaptic influence between regions in hierarchically 

arranged neural systems, observations of the relative prominence of local synaptic input61-63 and 

contemporary recognition of the activity dynamics it can engender64-66 indicate a relevance of 

robustness to input loss. Our knowledge of the relative robustness of networks in different cortical 

regions to input loss remains limited, but there are indications of variations in local recurrence that 

may induce variation in local network robustness67-69. Uncoupling of functional influence between 

regions and their firing patterns like that we observed may be expected if local circuit dynamics 

are the primary determinant of inter-regional influence among brain regions. 

These dual determinants of inter-regional influence should be kept in mind in interpreting 

the larger, earlier activity change we observed in RFA. Our findings thus call into question 

previous interpretations of earlier rising activity in premotor cortex as reflecting a hierarchy 

mediated by feedforward influence9,19,29,35. Though our results show RFA has a stronger direct 

influence on CFA than vice versa, this may not depend on the earlier rising activity in RFA, but 

instead on a differing robustness to input loss. As has been proposed previously, the earlier rising 

activity in premotor regions could reflect involvement in distinct aspects of movement, ones that 

require more pre-movement preparation22.  
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Manifestations of hierarchy in firing patterns 

Our results indicate that asymmetries in the reciprocal influence between regions may not 

manifest at the level of firing patterns in ways we might have expected. In particular, we found a 

substantial imbalance in reciprocal influence but also that firing in each region was dominated by 

patterns shared between regions and was equally predictive of future firing in the other region at 

the single neuron level. These results raise questions about contemporary attempts to infer 

interactions between regions through network modeling of activity patterns alone. To serve as 

inputs that induce observed activity patterns, network models may exploit similar activity patterns 

seen in different regions. In a measurement regime where a very small fraction of relevant 

neurons are sampled, models could attribute influence that is actually local, but from unsampled 

neurons, to neurons with similar activity patterns observed in other regions. Models may then fail 

to reflect functional relationships revealed by activity perturbations. One way to at least partially 

address this may be to enforce in models a balance of across-region and within-region inputs that 

agrees with observations. 

 Using DLAG, we detected that some observed activity can be captured by similar but 

delayed patterns with either region’s activity leading, and RFA’s activity led to a greater extent. 

This generally agrees with the notion of a partial motor cortical hierarchy, with greater influence 

from the premotor RFA to the primary motor CFA than vice versa. It may then be tempting to 

interpret these activity components as mediating the imbalanced reciprocal influence we observed 

from optogenetic perturbations, but this remains supposition. We should also consider why other 

analyses we performed did not detect asymmetries like those we observed with DLAG. The failure 

to detect asymmetry with CCA and PLS applied after shifting one region’s activity relative to the 

other’s may indicate that the across-region components detected by DLAG, though differing in 

activity variance capture, can still accommodate similar correlation or covariance when activity is 

aligned at a lag. In addition, the firing pattern predictivity calculations we performed for pairs of 

neurons may belie features of firing that emerge at the population level and are detected by 
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methods like DLAG. Importantly, the predictivity measures we used here do not account for the 

fraction of population-level activity variance each neuron’s firing pattern reflects. Consider a 

neuron whose time-varying firing rate is twice that of another: its firing pattern would be roughly 

equally predictive of any other (any effect of the increased number of spikes should be relatively 

small) but it would reflect twice as much population-level activity variance. 

It is commonly assumed that feedforward influence between regions will create predictive 

relationships between the activity patterns in the upstream and downstream regions. However, 

we have found that this does not always hold on the scale of neuronal populations in the motor 

cortex during reaching in mice. This helps explain previous findings from firing pattern analysis 

that have seemed at odds with notions of even a partial motor cortical hierarchy. For example, 

analyses of activity in premotor and primary motor cortices have described highly similar firing 

patterns32,70,71, similarities in preparatory activity72, and symmetry of modeled reciprocal input31. 

Our results show that these observations do not contradict an actual imbalance in reciprocal 

functional influence between regions. In general, our results from firing pattern analysis suggest 

that care should be taken when interpreting the results from any single analysis in relation to 

system function. The accurate inference of interactions between populations may require 

accounting for more than just simultaneous activity patterns. 

 

Models of PMC-M1 interaction 

From many different random initial conditions, our dual-population network fitting converged on 

solutions that well-fit mean firing patterns across our three dataset types – recording from either 

region while inactivating the other, and paired recording of both regions without inactivation – and 

exhibited a difference in the dependence of activity in each region on across-region input. Here 

we were not able to directly fit the observed activity of individual neurons, since our three dataset 

types were collected in different mice. However, our results provide a proof of principle that 

population-level features we observed, like asymmetric reciprocal influence and larger, earlier 
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activity change in one population, can emerge from local population dynamics, rather than 

asymmetric across-region input. This suggests that suppositions about how functional influence 

between populations may be reflected in firing patterns may not survive empirical testing, as the 

dominance of local population dynamics can uncouple firing patterns from the functional influence 

between populations. These results also suggest caution in interpreting the relative strength of 

inputs between populations in network models, whether input weights or weights times activity, in 

relation to system function. 

Our findings comport with recent theoretical results suggesting that local circuit dynamics 

can be the primary determinant of firing patterns in the presence of substantial across-region 

input45,46. Across-region connections may instead function to coordinate firing patterns across 

regions or modulate higher-order firing pattern features, like their autocorrelation68. Firing patterns 

may be defined primarily by other constraints, such as the need to generate appropriate motor 

output patterns. The propagation of local activity in the service of this systemic pattern generation 

could be another constraint, as a number of recent observations suggest that local circuit 

dynamics govern motor cortical firing73,74 to some extent75. Our results underscore the recognized 

need46 for developing theory about across-region interactions. 
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STAR METHODS 

Experimental Animals 

All experiments and procedures were performed according to NIH guidelines and approved by 

the Institutional Animal Care and Use Committee of Northwestern University. A total of 26 adult 

male mice were used, including those in early experimental stages to establish methodology. 

Strain details and number of animals in each group are as follows: 21 VGAT-ChR2-EYFP line 8 

mice (B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP) 8Gfng/J; Jackson Laboratories stock #014548); 

and 5 C57BL/6J mice (Jackson Laboratories stock #000664). All mice used in experiments were 

individually housed under a 12 hr light/dark cycle. At the time of the measurements reported, 

animals were 17-22 weeks old. Animals weighed approximately 23-28 g. All animals were being 

used in scientific experiments for the first time. This includes no previous exposure to 

pharmacological substances or altered diets. 

 

Directional Reaching Task 

We modified a recently published directional reaching task48. Head-fixed male mice were trained 

to reach to one of four spouts to grab a water reward they could then bring to their mouth and 

ingest. Mice initiate trials by placing their right hand on a rung (during training) or relaxing their 

forelimb muscles (during neural recording) for a period randomly chosen for each trial between 

one and three seconds (rest period). One of four LED lights in front of the mouse illuminates at 

trial onset, the location of which corresponds to the randomly-selected spout location where water 

will be dispensed on the given trial (Figure 1A). If the forelimb remains at rest for the duration of 

the rest period, a 4 kHz tone (‘Go’ cue) sounds for 100 ms, a water droplet is dispensed, and the 

mouse is free to reach out and grasp it. If the mice move their forelimb before the rest period 

ends, a 400 Hz buzzer sounds for 50 ms, the LED turns off, and a 200 ms delay must pass before 

another trial can be initiated. If the water droplet is not retrieved within 1 second (response period), 

it is removed by a suction tube immediately beneath the dispensation spout and the buzzer 
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sounds. If mice reach to the correct spout, a 2 s consumption period is imposed before a 

subsequent trial can be initiated. If the mice reach to the incorrect spout first, the buzzer sounds 

for 50 ms. 

 

Apparatus 

The training apparatus was housed inside a sound attenuating chamber (H10-24TA, Coulbourn). 

Head-fixed mice were positioned within a 3D printed enclosure with sections removed to allow 

fixation of the mouse’s headplate to a headplate holder and to allow the right hand access to the 

rung and spouts. Enclosures also had a second rung for the left (non-reaching) hand and a divider 

below the mouse’s chest that extended in front of the mouse to prevent the left hand from gaining 

access to the spouts. The waterspouts (blunted 21G needles) were positioned in front of the 

mouse on its right side in a diamond configuration. The waterspouts were 6 mm apart vertically 

and horizontally. Suction tubes (blunted 21G needles) that were 1.5 mm shorter were attached 

below each spout. The spouts were secured by a 3D printed holder and their position was 

adjusted using a three-axis manual micromanipulator (UMM-3C, Narishige). The spouts and 

suction tubes were connected to solenoid valves (161T012, Neptune Research) through flexible 

tubing (EW-06422-01, Cole-Parmer).  

Waterspout and rung touches were detected with capacitive touch sensors (AT42QT1011, 

SparkFun) during training. Capacitive touch sensors could not be used during neural recording 

since they cause electrical artifacts. Thus during neural recording, spout touches were detected 

with an infrared beam sensor (FT-KS40 and FX-502, Panasonic) and right forelimb muscle activity 

measured with EMG electrodes was used to initiate trials. Mice initiated trials by reducing muscle 

activity below a threshold set so that any limb movement during the rest period would cause a 

threshold crossing and abort the trial. The buzzer was also removed during neural recording. 

Experimental control was performed using the Arduino Due. Four speakers and an 

Arduino Uno were used to play the reward tone. Four green LEDs (1.8 mm diameter) were 
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secured by an LED holder in a diamond configuration at 10 mm apart vertically and 20 mm apart 

horizontally. The LEDs were positioned approximately 10 mm away from the front of the mouse’s 

eyes and at the same height. 

 

Training 

Under anesthesia induced with isoflurane (1%–3%; Covetrus), mice were outfitted with 3D printed 

head plates (24 x 20 x 5mm) affixed to the skull using dental cement (Metabond, Parkell). 

Headplates had an open center that enabled subsequent access to the skull, which was covered 

with dental cement. During headplate implantation, the position of bregma relative to marks on 

either side of the headplate was measured to facilitate the positioning of craniotomies during later 

surgeries, or the skull was covered with clear cement to maintain the visibility of bregma. 

After recovery from headplate implantation surgery, mice were placed on a water schedule 

in which they received 1 mL of water per day. At least 4 days after the start of the water schedule, 

mice were acclimated to handling by the experimenter and head-fixation using a modification of 

established procedures76. After a day of acclimation to handling, mice were acclimated to head-

fixation and the reaching task over 1-4 daily sessions during which they were head-fixed in the 

reaching apparatus and provided water rewards. 

During head-fixed acclimation, the water droplets were dispensed from all 4 spouts at 

random intervals (5.5-6 s). The four spouts were placed in front of the mouth and all spouts 

dispensed a 5 µL water droplet signaled with the reward tone. The four LEDs all turned on while 

the water was being presented. The water droplets were automatically removed by suction at the 

end of the interval regardless of whether the mouse collected it or not. Mice freely licked the 

waterspouts and quickly learned the association between sound and reward. Once this was 

learned, the waterspouts were moved to a lower right position that allowed easy access for the 

right hand. Mice spontaneously performed reach-to-grasp movements to collect and consume the 
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water droplets by licking their hand. Almost all mice completely switched to the reaching behavior 

during the first or second session. 

Following acclimation, mice underwent a daily 60 min training session to learn to initiate 

trials by touching the rung and to associate the location of the illuminated LED with the waterspout 

location where reward would be dispensed. To encourage mice to reach to all four spout locations, 

the probability of each spout being selected for water dispensation on a given trial was computed 

based on the percentage of successful reaches to the given spout for past trials during the given 

session. Probabilities were inversely proportional to success rates. In addition, two task 

parameters were adaptively changed during training sessions to shape mouse performance: the 

rest period was gradually lengthened (starting from 0.1 s), and the response period during which 

the water was available was shortened (starting from 10 s). Over 7 to 18 daily training sessions, 

mice learned to associate the illuminated LED location with the spout location, to wait during 

increasingly long rest periods, and to reach within increasingly short response periods. The rest 

period gradually became longer until mice were able to wait for more than 2 s. The response 

period adaptively changed until they were able to reach within 1 s.  

For some mice, upon reaching these behavioral thresholds, neural recordings were 

performed during subsequent training sessions (n = 3 mice, total of 10 recording sessions). For 

another cohort of mice, once they met these conditions, recordings were performed during 

subsequent sessions using an experimental control script that did not adaptively update task 

parameters. In this script, the probability of each spout being selected for water dispensation did 

not vary, the rest period randomly changed between 1 and 3 s in 0.2 s increments, and the 

response period was fixed at 1 s (n = 3 mice, total of 11 recording sessions). These data were 

analyzed separately but eventually combined because there was no substantive difference in the 

results. 

 

EMG Recording 
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EMG electrodes were fabricated for forelimb muscle recording using established procedures49,77. 

Briefly, each set consisted of four pairs of electrodes, each consisting of two 0.001’’ braided steel 

wires (793200, A-M Systems) knotted together. On one wire of each pair, insulation was removed 

from 1 to 1.5 mm away from the knot; on the other, insulation was removed from 2 to 2.5 mm 

away from the knot. The ends of the wires on the opposite side of the knot were soldered to an 

8-pin miniature connector (33AC2364, Newark). Different lengths of wire were left between the 

knot and the connector depending on the muscle a given pair of electrodes would be implanted 

within: 3.5 cm for upper forelimb muscles and 4.5 cm for lower forelimb muscles. The ends of 

wires with bared regions had their tips stripped of insulation and then were twisted together and 

crimped inside of a 27-gauge needle that facilitated insertion into muscle.  

Mice were chronically implanted with EMG electrodes during the surgery in which 

headplates were attached as described previously49,78. Insertions targeted the biceps (elbow 

flexor), triceps (elbow extensor), extensor carpi radialis (wrist extensor) and palmaris longus (wrist 

flexor). As discussed previously, while our methods produce isolated recordings from antagonist 

muscle pairs, we cannot exclude the possibility that EMG recordings are influenced by the activity 

of nearby synergist muscles, since our methods do not readily allow for simultaneous recordings 

from synergist muscles in the mouse forelimb. 

Recordings were amplified and bandpass filtered (1-75,000 Hz) using a differential 

amplifier (C3313, Intan technologies). Data was digitized and acquired at 30 kHz using the 

RHD2000 USB interface board and RHD USB interface GUI software (Intan technologies). 

Suprathreshold activity of any muscle was detected in this software to indicate forelimb 

movement. Typical thresholds were 150-500 µV.  

 

Optogenetic Inactivation 

After VGAT-ChR2-EYFP mice reached proficiency after several days of training on the directional 

reaching task, dental cement above the skull was removed and a 2-2.5 mm diameter craniotomy 
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was made above the left CFA or RFA. A thin layer of Kwik-Sil (WPI) was applied over the dura 

and a 4 mm diameter #1 thickness cover glass (64-0724, Warner Instruments) was placed on the 

Kwik-Sil before it cured. The gap between the skull and the cover glass was then sealed with 

dental cement around the circumference of the glass. A small 0.5 mm diameter craniotomy was 

then opened over the other region for recording. 

During subsequent behavioral sessions, a 400 µm core, 0.39 NA optical patch cable 

(FT400EMT, Thorlabs) terminating in a 2.5 mm ceramic ferrule was attached to a 

micromanipulator (SM-25A, Narishige). We set the cable at a certain distance above the surface 

of the brain for each session using a micromanipulator to ensure that the cone of light emanating 

from the cable would project a spot of light 1.5 mm in diameter onto the surface of the brain. A 

Neuropixel probe was inserted into the open craniotomy and recordings were performed as 

described in the next section, except the agarose and paraffin were omitted to avoid covering the 

window above the other region. To attenuate firing throughout motor cortical layers, we used a 

450 nm laser (MDL-III-450-200mW, Opto Engine LLC) to apply 50 ms pulses of light at an intensity 

of 9 mW/mm2 to the brain surface. To inactivate the motor cortex near the outset of reaching, the 

light pulse was triggered when either the biceps or triceps EMG signal reached a threshold set to 

reflect activation above baseline inactivity (usually 100-500 µV). Light was applied during a 

random 50% of the trials on which the stimulation conditions were met. Unstimulated trials were 

used as controls. 

 

Neural Recording 

Acute recordings using two Neuropixel 1.0 probes (Imec) were performed as mice performed the 

reaching task. To expose the recording area, dental cement above the skull was removed and a 

2 mm diameter craniotomy was made over CFA and a 1 mm diameter was made over RFA. The 

exposed brain tissue was sealed with silicone elastomer (DentSilicone-V, Shofu or Kwik-Cast, 

World Precision Instruments). A stainless-steel screw (U-1415-01, Hirosugi-Keiki) was implanted 
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above the contralateral cortex as a ground. The large tip electrode on the shank of Neuropixels 

was used as a reference. Before recording, the animal was head-fixed, the silicone elastomer 

was removed, and the Neuropixels were slowly inserted at an inclination of 30° in the  coronal 

plane and 15° in the parasagittal plane using fine micromanipulators (SM-25A, Narishige). For 

CFA, probes were inserted between 1 to 2 mm lateral and 0.5 rostral to 0.5 mm caudal of bregma. 

For RFA, probes were inserted 0.35 to 1.35 mm lateral and 1.75 to 2.75 mm rostral of bregma. 

Once the probes were in place, the brain surface was covered by agarose gel (2% agarose-HGT, 

Nacalai Tesque) and a mixture of liquid and solid paraffin, to minimize the vibration of the brain. 

Data was acquired at 30 kHz using the PXIe Acquisition Module (Imec) and SpikeGLX software 

(Janelia Research Campus). 

 

Quantification And Statistical Analysis 

All analysis was completed in MATLAB versions R2021b or later (MathWorks). 

 

EMG Processing and Analysis 

With certain exceptions discussed below, EMG measurements were downsampled to 1 kHz, high-

pass filtered at 250 Hz, rectified, and convolved with a Gaussian having a 10 ms standard 

deviation.  

 

EMG During Optogenetic Inactivation 

Before EMG trial averages were analyzed, outliers were removed. The total Euclidean distance 

between muscle time series segments from -50 ms to 0 ms before light/trial onset, summed across 

muscles, was computed (MATLAB function ‘pdist2’). Control and inactivation trials were combined 

for each muscle. The distances were then averaged across trials. A threshold was set one 

standard deviation above the mean. Trials above this threshold were excluded and were not used 

in subsequent EMG analyses. 
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The absolute difference between control and inactivation trials was calculated using the 

difference between the means for EMG time series for each muscle. The fractional changes in 

the time series were corrected for the difference expected by chance due to the use of separate 

sets of trials, estimated as follows. On 1000 different iterations, we divided the control trials into 

random halves and similarly calculated an absolute difference time series using the two halves. 

The mean absolute difference time series across these 1000 iterations was computed, and this 

mean was subtracted from the absolute difference time series computed with the actual data. 

Lastly, we subtracted the mean value across the 20 ms preceding light/trial onset time from the 

resulting time series.  

 

Identification of Reach Initiation using EMG 

Muscle activity measured from EMG recordings was used to determine the time of reach onset. 

For this analysis, EMG across all recorded muscles was summed to obtain a single trace 

representing overall muscle activity. Reach epochs were first identified using the reward tone and 

port beam break sensor traces to find trials where the animal successfully obtained the water 

droplet. As the animal’s reaching strategy could trigger an additional beam break at an incorrect 

port, successful reaches were defined as instances when the beam break at the correct port 

occurred within 50 ms of the first beam break at any port. As the rest period prior to the reward 

tone is at least 1 s in duration, the EMG baseline for each reaching trial was found by computing 

the average summed EMG between -500 ms and -100 ms relative to the reward tone. A global 

standard deviation from baseline during quiescence (no muscle activation) was identified by 

calculating the standard deviation of an arbitrarily selected quiescent period identified in the 

recording. A lower threshold for each trial is set to the EMG baseline plus 7 times the global 

standard deviation. The upper threshold is set to the 30th percentile EMG value across epochs 

from reward tone to beam break for all successful trials. The reach onset time was defined as the 

lower threshold crossing immediately preceding the first upper threshold crossing after the tone. 
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The double threshold algorithm was used because on some trials, EMG would first go above and 

then return below the lower threshold before the reach, likely from a twitch or other involuntary 

reaction to the reward tone. Trials in which the EMG never crossed the upper threshold were 

excluded from further analysis. 

 

Reaching Trial Exclusion 

Due to the presence of successful reaching trials with outlying muscle activity traces, certain 

exclusionary criteria were implemented to curate a collection of reaching trials to be utilized for 

subsequent analysis. Reach duration was calculated by subtracting the reach onset time from the 

beam break time. Successful trials in which the reach duration was longer than the mean duration 

of all successful trials in the given session plus 3 times the standard deviation were flagged for 

exclusion. Reaction time was calculated by subtracting the reward time (solenoid command pulse 

onset) from the reach onset time. Successful trials in which the reach onset was less than -50 ms 

were flagged. Negative reaction times were possible in sessions where a fixed rest period was 

used because the animal was able to predict the reward tone. Ramp time was calculated by 

subtracting the reach onset time from the second threshold crossing time. Successful trials in 

which the ramp time was longer than the mean ramp time for all successful trials in that session 

plus 3 times the standard deviation were flagged. Finally, successful trials in which the standard 

deviation of the trial’s individual EMG baseline was greater than the mean baseline standard 

deviation for all successful trials in that session plus 3 times the standard deviation were flagged. 

The final set of qualifying successful trials for each session was obtained by removing any flagged 

trials. 

 

Spike Sorting and Unit Curation 

Putative spikes were detected and sorted with Kilosort379 using default parameters. Sorting was 

improved (i.e. single unit yield was increased) by excluding pathological channels before sorting. 
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These channels were identified using abnormalities in high frequency components. The fast 

Fourier transform (MATLAB function ‘fft’) was computed for each channel and the weights over 

the interval from 300 to 1000 Hz were summed. We observed that the magnitude of this sum 

varied smoothly across channels, with the exception of certain channels which were characterized 

by much larger, outlier values. After median subtracting over a window of 10 channels, 

pathological channels were identified using a threshold of the median plus or minus 3 times the 

standard deviation. Channels identified in this manner for exclusion were consistent across 

recordings for  the same probe. We excluded between 5 and 10 channels per session.  

Single units identified by Kilosort3 were further curated by removing those with abnormal 

refractory violations. Inter-spike intervals (ISIs) were calculated by taking the autocorrelation of 

the spike trains binned at 0.1 ms. A test statistic was generated by summing ISI frequencies from 

0.3 to 1.0 ms and normalizing by the summed ISI frequencies between 10 and 50 ms to account 

for overall firing rate. Units with a test statistic greater than 0.18 were excluded from any further 

analysis. This threshold is based on the frequency of violations expected in a sorted unit resulting 

from two neurons having Poisson spiking and with one of the units accounting for 90% of the 

spikes. 

Depths of sorted units were analyzed to identify cortical cells. CFA has a thickness of 

approximately ~1500 μm, and RFA has a thickness of ~1800 μm. For both CFA and RFA 

recordings, the depth of the most superior unit was used as an approximation for the cortical 

surface. Units within 1500 μm of this superior unit were considered cortical cells and subsequently 

analyzed. Firing rates were estimated at each ms during recordings by summing Gaussians with 

a 10 ms standard deviation centered on each spike time.  

Putative pyramidal cells were identified based on waveform width. Widths for each unit 

were calculated by finding the trough-to-peak duration of the assigned waveform template. A 

histogram of waveform widths collected across all dual-probe recording sessions exhibited a 

bimodal distribution that could be well approximated by the sum of two gaussians. Using this 
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model, we defined a width threshold that permits a 5% misclassification rate where tails of the 

fitted gaussians fall above or below threshold49. A threshold of 0.417 ms was defined as the 

difference between wide-waveform and narrow-waveform cells. 

Units were also classified based on whether their peak or trough had a greater magnitude. 

This was determined by analyzing the assigned waveform template and determining whether the 

maximum absolute value was originally positive or negative.  

 

Identification of Neurons Significantly Correlated with muscles.  

In order to identify the neurons that significantly correlated with muscle activation, instantaneous 

firing rates were calculated from spike trains by smoothing each train with 10 ms standard 

deviation Gaussian. This allowed the correlation to be measured between a neuron’s 

instantaneous firing rate time series with each muscle’s recorded EMG activity. A bootstrapping 

approach was implemented to determine which of these correlations were significant and not by 

chance. Spike trains were circularly shifted at least ten seconds and no more than ten seconds 

less than the duration of the experiment (to ensure that the circular shift adequately removed any 

temporal structure between the neurons and the muscles) and correlations were calculated again. 

This process was repeated 300 times producing a null distribution for each neuron’s correlation 

‘by chance’ to each muscle. The observed correlations for each muscle was measured against 

the null distributions using a two-tailed test (to find both correlated and anti-correlated neurons) 

and if any p value corresponding to a muscle was significant (p<0.05) the neuron was labeled as 

significantly correlated to muscle activity.  

 

Optogenetic Inactivation Effects on Firing Patterns 

For analysis of optogenetic inactivation effects, outlier trial exclusion was done differently since 

the activity perturbation may affect trial outcome. This exclusion was done by combining both 

inactivation and control trials for each neuron. We determined the distance between firing rates 
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over the 20 ms before laser/trial onset between all the trials (MATLAB function ‘pdist2’) under the 

assumption that before reach initiation, the firing rate series for each neuron should look similar. 

These distances were then averaged across neurons for each trial. A threshold was set at the 

mean of these distances plus a quarter of the standard deviation. Trials falling above this threshold 

were excluded. 

Trial-averaged neuronal firing rates for control and inactivation trials were baseline 

subtracted by subtracting the mean firing rate from -20 to 0 ms before light/trial onset from the 

entire time series for each neuron. Across-animal trial averages were calculated using the same 

number of neurons from each animal to prevent animals with more recorded neurons from 

dominating the averages. We first found which mouse of the three similarly inactivated had the 

lowest number of recorded neurons, n, and used the n highest firing rate neurons from the other 

mice.  

The absolute difference between inactivated and control trials was calculated for individual 

neurons and averaged across similarly-inactivated animals for comparison. We subtracted the 

control trial average from the inactivation trial average for each neuron, and then took the absolute 

value. The averages again used the same number of neurons from each of the three mice based 

on whichever had the least amount recorded. The resulting average difference time series for 

RFA- and CFA-inactivated mice were baseline corrected by subtracting the mean change from -

20 to 0 ms before laser/trial onset from the entire time series.   

To verify that Channelrhodopsin2 (ChR2) stimulation of inhibitory interneurons only 

occurred in the target region and did not spread to the recorded region, we modified SALT52, a 

method developed to detect light-responsive neurons in a statistically-based, unsupervised 

manner. A window size of 5 ms was used for baseline and test epochs and the analysis used a 

time resolution of 1 ms. In order to ensure that the resulting p-values followed a uniform 

distribution from 0 to 1 under the null hypothesis of no direct light effect, a random sample from 

the Jansen-Shannon divergence values obtained from the post-stimulus firing patterns was used 
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for comparison to an empirical null distribution based on firing during non-stimulus epochs. This 

step replaced the step in the original algorithm where the median of the Jansen-Shannon 

divergence values was taken, which did not yield a uniform p-value distribution under the null 

hypothesis. For each recording session, a p-value was computed for the firing of each narrow-

waveform neuron following light onset, where a low p-value indicates a neuron more likely to 

directly respond to light. For our purposes, the approximately uniform distributions of p-values we 

observed (Figure S3A-D) demonstrate general conformance to the null hypothesis of no direct 

ChR2 activation in the recorded region.  

 

Delayed Latents Across Groups (DLAG) 

The application of DLAG used firing patterns during qualifying successful trials (see above). To 

avoid covariance matrix rank deficiency in fitting DLAG models, we excluded low-firing neurons 

by setting a threshold such that any neuron that spiked fewer times than half the number of trials 

was excluded. For remaining neurons simultaneously recorded in a given session, firing rate 

matrices were assembled for each region, where each element was a given neuron’s firing rate 

average over a 20 ms window. Trials spanned from 200 ms before to 800 ms after reach initiation. 

Matrices were thus N neurons x 50 time bins. The DLAG model was then fit using these matrices 

for each trial. Positive delay values indicated latent variables where CFA led RFA, and a negative 

delay value indicated latent variables where RFA led CFA.  

To probe the robustness of observed results, we varied the numbers of across-region and 

within-region latent variable dimensionalities (i.e. the numbers of latent variables). Models were 

fit to each session’s data with every combination of across-region dimensionalities of 2 to 6 and 

within-region dimensionalities of 2 to 6 in each area; therefore, sessions were eligible only if each 

area had at least 12 remaining neurons (n = 15 sessions). Any across-region latent variable with 

a delay that failed to converge or reached the boundary values of ±200 ms in 10,000 iterations 

was removed from the analysis.  
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To test if identified delays were significantly different from zero, bootstrapping was 

performed by sampling 100 trials from the set of existing trials with replacement, as in the originally 

published method36. A delay was considered statistically significant if less than 5% of the 

bootstrapped samples performed just as well with a model with a 0 ms delay as they did with the 

model with the original calculated delay. Across-region latent variables with non-significant delays 

were removed from the analysis.  

For each session, we calculated the proportions of variance captured by across-region 

latents with statistically significant delays. We grouped the latents by the sign of their delays (i.e. 

which region led), and each across-region latent’s variance was defined as the variance captured 

in the lagging region (i.e. the downstream region).  

 

Canonical Correlation Analysis (CCA) and Partial Least Squares (PLS) 

CCA (MATLAB function ‘canoncorr’) and PLS were performed on matrices comprising the trial 

averaged firing rates for all neurons from an animal, concatenating averages aligned on both 

reach onset and spout contact for reaches to each of the four spouts (i.e. eight trial averages are 

concatenated). Averages spanned from 99 ms before to 100 ms after the alignment point, 

resulting in matrices of size 1600 time points x NCFA neurons and 1600 time points x NRFA 

neurons for each recording session, where NCFA is the number of included neurons from CFA 

and NRFA is the number of included neurons from RFA. We denote these matrices XCFA and 

XRFA in what follows. PCA was performed on these matrices and on average, 25 principal 

components were able to capture 95% of the neural activity variance, and so 25 was chosen as 

the number of PLS components and canonical variables for the subsequent analyses, enabling 

comparison to PCA results. 

To mitigate matrix rank deficiency for CCA, principal component analysis was performed 

on the neural activity matrices and the first 25 principal components were then used for the CCA. 

Since the resulting 25 canonical vectors (CVs) for each data matrix are not necessarily 
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orthogonal, they were orthogonalized in order to compute the additional neural activity captured 

by successive CVs, enabling comparisons with principal components. Weighted averages of 

Pearson correlations for all pairs of CVs were computed by weighting the Pearson correlation of 

each CV pair by the average of the additional neural activity variance captured by each 

corresponding orthogonalized CV from the pair. To account for synaptic delay between RFA and 

CFA, lags were introduced in the same way as stated below for the PLS analysis. 

For PLS, the PLS-SVD variant55 was used. PLS-SVD is done by performing 

singular value decomposition on the cross-covariance matrix XTY which in our case is 

XRFAT XCFA, yielding  

 

𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇  =  𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇  ⋅ 𝑋𝑋𝐶𝐶𝑅𝑅𝑅𝑅 

 

where the columns of U define axes in RFA activity space and the columns of V define 

axes in CFA activity space. The matrix S is a diagonal matrix where the nth diagonal 

element is the covariance of RFA activity projected onto the nth column of U and CFA 

activity projected onto the nth column of V. The trace of S can be interpreted as how much 

total covariation between RFA and CFA activity is captured by the PLS components. A 

necessary additional step is to divide this number by the total variance in neural activity 

in these two matrices in order to normalize by how active these brain regions are during 

the reach and grasp epochs that are being analyzed.  

 

𝑐𝑐 =  𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡(𝑈𝑈) / (𝑣𝑣𝑅𝑅𝑅𝑅𝑅𝑅  +  𝑣𝑣𝐶𝐶𝑅𝑅𝑅𝑅) 
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where vRFA and vCFA are the sum of the variances of the rows of XRFA and XCFA 

respectively. The original activity matrices can then be projected onto their respective 

axes (by XRFA * U for RFA, XCFA * V for CFA) to produce time courses in neural activity 

space such that corresponding pairs will maximally covary, i.e. the projection of XRFA onto 

the kth column of U and XCFA onto the kth column of V will have covariance equal to the kth 

diagonal element of S (Fig. S4). 

PLS-SVD was similarly performed after shifting one activity matrix in time relative 

to the other. This was done by keeping the same XRFA matrix for each animal, but 

constructing a new XCFA matrix. The reach and grasp onset times were shifted by an 

amount between -30 and 30 ms and the trial epochs -99 to 100 ms around each shifted 

time point were extracted, trial averaged, and concatenated just as before. PLS-SVD was 

then performed and c was recomputed for each lag from -30 to 30 for each animal.  

 

Firing Pattern Predictivity Measurements 

These measurements were performed on a subset of simultaneously recorded neuron pairs from 

dual probe recordings. Only wide-waveform, putative pyramidal neurons having a maximum 

waveform deflection in the negative direction were used. Average firing rate was calculated for 

each neuron across all qualifying successful trials over the window from 200 ms before to 800 

after reach initiation. The ten thousand neuron pairs with the highest average firing rate products 

across all sessions were identified. Note that pairs only included neurons that belonged to the 

same session, as simultaneous recording was required for the trial-by-trial predictivity analysis 

performed here. 

After calculating the firing rate distribution of the CFA and RFA cells belonging to the top 

ten thousand pairs, CFA cells had higher firing than RFA cells on average. Firing pattern 

prediction can be heavily influenced by differences in firing rate, since statistical power can be 
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related to the number of spikes observed. Thus, we developed an algorithm to match the 

distributions of firing rates by excluding certain pairs. We first generated histograms of the log 

firing rate for the CFA and RFA cells belonging to the top ten thousand pairs binned at 0.05 log 

spikes per second. Note that the multiplicity of a given neuron in these distributions matched the 

number of pairs the given neuron appeared in. To start the algorithm, a firing rate bin with more 

CFA cells than RFA cells was chosen. We then randomly selected a cell pair that contained a 

CFA cell from this bin and an RFA cell from a firing rate bin which had more RFA cells than CFA 

cells. To better match the firing rate distributions, the high firing rate CFA cell was then replaced 

with a different CFA cell from the same session and firing rate bin as the selected RFA cell. The 

selection of new CFA cells was allowed to occur with replacement. This selection process was 

repeated until all firing rate bins contained the same number of CFA and RFA cells, or when no 

other cell pairs could be created to match the binned firing rate distributions.  

From distributions of p-values calculated as described below for each metric, we estimated 

the fraction of false null hypotheses as one minus an estimate of the a priori fraction of true null 

hypotheses58 (MATLAB function ‘mafdr’). 

 

Transfer Entropy 

Transfer entropy analysis was performed using a publicly available algorithm43. This algorithm 

takes the spike trains of two neurons (one source neuron, one target neuron), and compares how 

well the spiking of the target neuron can be predicted when considering its past history as well as 

the past history of the source neuron. The better the source neuron’s past history improves the 

prediction of the target neuron’s spiking activity compared to the source neuron’s own past history 

alone, the higher the transfer entropy (TE) value. In this case, to increase our statistical power, 

rather than using the trial segments used for Granger causality described below, we extracted 

and used spiking during epochs of movement in the following way. First, rectified and filtered EMG 

recordings from the four muscles were summed. Then, a period of approximately one second of 
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muscle quiescence was manually identified in this summed time series. A threshold was set at 

the average value over this period plus 7 times the standard deviation over this period, and 

movement epochs were defined as when summed muscle activity surpassed this threshold. To 

include brief reductions in muscle activity that happen during ongoing movement, any epoch of 

100 ms or less below this threshold was reclassified as movement. Additionally, periods of 

movement less than 10 ms were reclassified as non-movement since this was unlikely to reflect 

meaningful movement. The neural activity during these movement epochs was then extracted 

and concatenated. However, when concatenating epochs, the discontinuous skips in time from 

the end of one epoch to the beginning of the next could, although very sparse, cause inaccurate 

calculations of the transfer entropy by counting spikes from one time point as causing spikes at a 

time point much farther in the future. To circumvent this issue, pads of zeros were inserted 

between each movement epoch so that no spikes in one epoch could be calculated as causing 

spikes in the next movement epoch. To calculate transfer entropy, we used TEJ->I(d) from 

eq. 5 in ref. 43. We calculated TEJ->I(d) for d = 0,1,2,...,30 ms and took the maximum 

value as our measurement for the transfer entropy between two neurons, the observed 

TE value. 

In order to determine the significance of the observed TE value for each neuron pair, we 

obtain a corresponding p value by creating empirical null distributions, i.e. TE values expected in 

the absence of coupled firing between the neurons. For each neuron pair, the concatenated spike 

train of the source neuron is circularly permuted (MATLAB function ‘circshift’) by values no less 

than 3 seconds and no more than T-3 seconds (where T is the duration of the concatenated spike 

train) so that any temporal relationship between the two spike trains is extinguished while 

preserving the spiking statistics and firing rate patterns of each individual spike train. After this 

permutation, the TE was measured as before. This process was done 300 times to form a null 
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distribution of TE values for each neuron pair and a p value was calculated by taking the fraction 

of null TE values that were higher than the observed TE value.  

 

Granger Causality 

Point-process Granger causality with exogenous temporal modulations (GC44), was utilized to 

assess directional bias in the predictivity of neuronal firing between CFA and RFA. Using GC, 

predictive models are generated to fit spiking data of a target neuron using the spiking data from 

the entire neuronal ensemble, both with and without the source neuron. In our conditions, this 

neural ensemble contains neurons from both CFA and RFA. The method yields a test statistic for 

each source-target neuron pair by computing the difference in accuracy of the prediction from 

these two models. The larger difference, the more unique information the source neuron contains 

about the spiking of the target neuron. This test statistic follows a chi-squared distribution, yielding 

p-values for each source-target pair. 

Binary spike trains for each neuron belonging to the top ten thousand firing rate CFA/RFA 

neuronal pairs were generated. Only spiking data between 200 ms prior to reach initiation and 

800 ms after reach initiation were used. GC was conducted on a per-session basis using a random 

selection of 40 qualifying successful trials (the same for all pairs) to limit computation time. Global 

regression of exogenous temporal modulations were optimized to bins of either 1 ms, 5 ms, 8 ms, 

10 ms, 20 ms, or 25 ms. The duration of spiking history incorporated in the model was fixed at 30 

ms to force all computed test statistics to follow the same chi-square distribution.  

For certain source-target pairs, the model did not converge on the target spiking data 

within tolerance. We removed these pairs from the analysis. Additionally, for some pairs, the 

model would be overfit and predict the target data perfectly. We also removed these pairs from 

further analysis. As a consequence, 35% of the 10,000 pairs with the highest product of average 

firing rates were excluded from the GC analysis for these reasons. However, this should not affect 

our results in a meaningful way. While it could affect the degree of skew toward 0 in p-value 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2024. ; https://doi.org/10.1101/2023.09.23.559136doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.23.559136


56 
 

distributions, here we are not ascribing significance to the degree of skew, just the similarity 

between the skew for the CFA source and RFA source conditions. We also do not draw 

distinctions between the results from different prediction methods that would be affected by only 

using a subset of neurons for GC. 

Following these exclusions, we observed a preponderance of pairs with p-values greater 

than 0.95. We found that the firing rate product of these high p-values pairs were heavily skewed 

towards low values (Figure S6A). These low firing rate pairs likely did not meet the assumptions 

of GC and were removed from further analysis. Following this exclusion, the firing rate 

distributions of RFA and CFA neurons belonging to this final set of neuronal pairs were reanalyzed 

and found not to be appreciably different (Figure S6B-C). 

The GC algorithm additionally computes the model difference test statistic for all within-

region pairs. Using these values, the predictive power of the CFA and RFA intraregional neuronal 

population was also assessed.  

 

Convergent Cross Mapping 

Convergent Cross Mapping (CCM) was implemented using a modified version of MATLAB 

function ‘Sugi’80. Here we used the algorithm to quantify how well the activity of the source (casual) 

neuron can be predicted by the historical dynamics of a target (effector) neuron. While TE and 

GC assume the observations underlie a purely stochastic system, CCM can uncover casual 

interactions in a dynamical system with a weak to moderate deterministic component and where 

casual variables do not contain unique information.  

For each pair of source and target neurons, the historical dynamics of the target neuron 

can be represented by a "shadow manifold," where every point on the shadow manifold is 

constructed from time-lagged observations. Intuitively, we can think of nearby points on the 

shadow manifold as having similar dynamics. Thus, if the source neuron has casual interactions 

with the target neuron, then activity of the source neuron at time t can be predicted from a cluster 
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of nearby points at time t in the shadow manifold. CCM quantifies these casual interactions by 

finding the correlation coefficient between the predicted source activity calculated using a cluster 

of nearby points in the target manifold at time t and the actual source activity at the same time, a 

metric termed “cross-map skill”57,81.  

The preprocessing and trial extraction followed the same steps used for Granger causality 

calculations. Five thousand RFA-CFA neuron pairs were curated by taking the top ten thousand 

pairs described above and excluding the bottom 50% when sorted by lower firing rate of the pair. 

This avoided anomalous results from CCM calculations that seemed to depend on epochs with 

very few or no spikes. Spike trains were then binned at 1 ms and smoothed using a gaussian 

kernel with a sigma of 10 ms. For every neuron pair, 30 trials were randomly sampled from all 

qualifying successful trials to reduce computation time, and shadow manifolds were constructed 

from the previous 500 ms of activity in the target neuron within the same trial. CCM was then 

applied to these 30 trials to calculate a cross map skill value, quantifying the correlation between 

the time series of predicted source activity and the time series of actual source activity. To account 

for non-instantaneous interactions between neurons, this process was repeated at time delays up 

to 30 ms, incrementing every 3 ms (i.e. 0, 3ms…, 30 ms), keeping the maximal cross map skill 

value and its associated delay.  

In order to determine whether these observed cross map skill values were significant, an 

empirical null distribution was generated by disrupting the temporal relationship between pairs of 

neurons. For every pair, we repeated the same circular permutation method used with transfer 

entropy (300 permutations), and applied CCM to generate cross-map skill values, making sure to 

use the same 30 trials and optimal time delay used to obtain the actual cross map skill for the 

given pair. P-values for each pair were obtained by counting the fraction of null cross map skill 

values that were greater than the observed cross map skill. 

Applying CCM involved choosing several hyperparameters. E, the embedding dimension 

of the shadow manifold, can be thought of as the number of time lags that optimally captures the 
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historical dynamics of the target neuron; if E is set to 4, then each dimension on the shadow 

manifold represents the neurons activity at times [t, t-1 ms, t-2 ms, t-3 ms]. To determine the 

optimal value for E, we applied a simplex projection to each individual neuron in CFA and RFA to 

determine how many lagged dimensions best forecast a neuron’s own future activity82. This 

optimal embedding dimension for both CFA and RFA neurons was found to be 4. The number of 

nearby neighbors, K, searched for in the target shadow manifold was kept at 5 (E+1). 𝜏𝜏, which 

indicates how many timesteps each shadow manifold dimension is lagged in time [t, t-1*𝜏𝜏 ms, t-

2*𝜏𝜏 ms…], was set to 1.  

 

Network Modeling 

A recurrent neural network was trained to replicate experimental data. The package PsychRNN83 

was used to configure the network architecture, inputs, outputs, training, and simulation in the 

following way. Two neural populations of 500 units each, one representing RFA and the other 

representing CFA, were created with 80% excitatory units and 20% inhibitory units. The 

connection probability between neurons within each region was 5% and additional sparse 

connections were created from excitatory units in each region to neurons in the other region with 

a connection probability of 0.1%; no inhibitory units projected to the opposite region. A subset of 

100 excitatory units from each region were chosen to be the units whose activity was trained to 

reproduce the observed muscle activity traces; these neurons were also stipulated not to have 

any projections to the opposite brain region. The simulated muscle activity output was the 

weighted sum of the activity of these 200 neurons, with weights allowed to vary during training. A 

second subset of 100 excitatory units from each region were chosen to be the units whose activity 

was trained to reproduce the experimental neural activity traces.  

Experimental data used for training all models consisted of averaged neural or muscle 

activity spanning from 50 before to 100 ms after reach onset from successful reaches. Averages 

from one animal were used for each of three conditions (CFA inactivation, RFA inactivation, dual 
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recording/no inactivation). However, since animals were used for only one type of experiment, 

training data reflected data from three different animals. 

The simulated summed neural activity for each region was the weighted sum of each set 

of 100 neurons, with weights held constant to replicate how experimentally observed averages 

were calculated. To simulate activation of inhibitory interneurons expressing ChR2, all inhibitory 

units in the “inactivated” region also received a “light” signal as input. We modeled the light signal 

by concatenating two sigmoid curves, each with a maximum value of 1, using the following 

equation: 

𝑠𝑠(𝑡𝑡)  = ± 1
(1+𝑒𝑒−𝑘𝑘 ∗ 𝑡𝑡)

  
 

The ± denotes that the sign of the numerator of the two sigmoids varies. The first sigmoid had a 

positive numerator and ramps up from 0 to 1, while the second had a negative numerator so that 

it starts at 1 and decays to 0. The first sigmoid had k set to 0.5 so that the curve started to ramp 

up (surpassing a value of 0.01) at reach onset and reached 0.95 15 ms later. The signal sustained 

its maximum value of 1 until 50 ms after reach onset, and the second sigmoid had k = 1 so that 

the signal had a value < 0.01 5 ms later. All units also received a ‘Go’ signal as input in each of 

the three conditions. The ‘Go’ signal similarly was a sigmoid function that started at a value of 0 

and had k = 0.3, such that the curve started to ramp up (surpassing a value of 0.01) 40 ms before 

reach onset, reached 0.95 25 ms later, and then sustained its maximum value of 1 for the 

remainder of the trial.  

Training consisted of up to 100,000 trials where each was randomly selected to be one of 

the three conditions. For each trial, the output of the muscle output units was measured along 

with the neural activity output, either from the non-inactivated brain region or both regions if the 

trial was a no-inactivation trial. The mean squared error between the model outputs and 

experimentally observed traces was computed and used as input to the cost function, which was 

minimized as model weights were updated. Weights for connections between units within and 
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across regions were allowed to update but certain constraints were applied. Positive weights 

remained positive and negative weights remained negative in order to keep the number of 

excitatory and inhibitory units constant. Weights between units that were initialized to be 0 

remained 0 throughout training to keep the number of connections within and across regions 

constant. In the symmetric case, an additional term was added to the cost function: the absolute 

value of the difference between the sums of the weights of the across-region connections in each 

direction (RFA→CFA and CFA→RFA). As mentioned previously, output weights from the muscle 

output units were allowed to fluctuate throughout training but output weights from the neural 

activity output units remained fixed. Biases on all units also remained fixed during training.   
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SUPPLEMENTARY MATERIALS 
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Figure S1. RFA and CFA activity during directional reaching in mice.  

(A) For four example neurons, spike rasters (top) and binned firing rate (bottom) across all 

successful reach trials to each spout, aligned on reach onset (black arrowheads) and spout 

contact (Grasp, gray arrowheads). Bottom row shows the corresponding time series for the first 

principal component of muscle activity.  

(B) CFA (blue) and RFA (magenta) activity projected onto their respective first two principal 

components, from the recording involving the neurons shown in (A).  
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Figure S2. Effects of CFA and RFA inactivation on firing rates in the other region.  

(A-D) Histograms of p-values from our modified version of SALT for narrow-waveform neurons 

recorded in one session (A,C) or all sessions (B,D) in either CFA (A,B) or RFA (C,D) while 

inactivating the other region. The uniformness of these distributions indicates an absence of 

appreciable violation of the null hypotheses that neurons are not directly activated by light.  

(E-L) Mean firing rate ± SEM for wide-waveform (E-H) or narrow-waveform (I-L) neurons for one 

animal (E,G,I,K) or three animals (F,H,J,L) recorded in CFA (E,F,I,J) or RFA (G,H,K,L) while 
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inactivating the other region. Averages combining cells from multiple animals (F,J,H,L) used the 

same number of cells from each animal. (F). The cyan rectangle indicates when the light was 

applied.  

(M-P) Mean absolute firing rate change ± SEM between control and inactivation trials (M,O) and 

mean absolute firing rate difference between control and inactivation trials averaged from light/trial 

onset to 25, 50, or 100 ms afterwards (N,P) for wide- and narrow-waveform neurons recorded in 

CFA (M,N) or RFA (O,P) during inactivation of the other region. Black bars show mean across 

animals. 
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Figure S3. PLS alignment of RFA and CFA activity.  

(A) For the same animal used in Figure 3A, four PLS components aligned on reach onset or spout 

contact (grasp) for reaches to each spout. Bottom row shows the corresponding time series for 

the first principal component of muscle activity.  

(B) Mean ± SEM summed covariance of CFA and RFA PLS components computed when lagging 

CFA activity relative to RFA. We found no lag where components exhibit an appreciably greater 

total covariance.  

(C) Mean ± SEM Pearson correlation of canonical variable pairs computed by aligning CFA 

activity to itself, but lagging one copy relative to the other, for the average over all pairs either 

without (purple) or with weighting each correlation value by the variance captured by the given 

pair (black).  

(D) Same as (C), but when initially shifting one copy 10 ms relative to the other. In this case, we 

expect the alignment to be maximal at a lag of -10 ms. 
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Figure S4. Additional plots from DLAG calculations. 

Results in this figure are similar to Figure 5C-G, but include all components identified by DLAG 

having lags between -200 and 200 ms 

(A) Histogram of DLAG component lags that were significantly different from zero and between -

200 and 200 ms, for all recording sessions (n = 15). Red line indicates the median component 

lag. 

(B),(C) Histogram of DLAG component lags weighted by the variance each component captures 

in CFA (B) or RFA (C), for all recording sessions. Red lines indicate the mean component lag 

after weighting by variance capture. 

(D),(E) Mean ± SEM fractional activity variance captured in the lagging region by DLAG 

components when the lag was significantly different from zero and between -200 and 200 ms 

when varying the within-region (D) or the across-region (E) dimensionality (n = 15 sessions). 
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Figure S5. Additional plots from firing pattern predictivity calculations.  

(A),(B) Firing rate distribution for CFA (blue) and RFA (magenta) neurons belonging to the 10,000 

pairs with the highest firing rate product across all 21 recording sessions, before (A) and after (B) 

applying our algorithm for equalizing the firing rate distributions to avoid imparting a directional 

bias in firing pattern prediction calculations. Box plots on top show the minimum, 1st, 2nd, and 

3rd quartiles, and maximum values.  

 

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2024. ; https://doi.org/10.1101/2023.09.23.559136doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.23.559136


68 
 

 

 

Figure S6. Further neuron pair exclusion to avoid calculation anomalies.  

(A) Illustrates the calculation of a firing rate product threshold to eliminate an abnormal number 

of p values near 1. We determined that these anomalous values resulted from pairs with lower 

firing rate products, for which statistical assumptions of calculations likely were not met. Trace 

shows the fraction of p values greater than 0.95 at different firing rate product thresholds on the 

pairs used for Granger causality calculations. Red line shows the expected fraction greater than 

0.95 based on the p value distribution.  

(B),(C) Firing rate distribution for CFA and RFA neurons included in pairs analyzed using Granger 

causality (B) or convergent cross mapping (C) after firing rate product threshold exclusion. In 

(B),(C), box plots on top show the minimum, 1st, 2nd, and 3rd quartiles, and maximum values. 
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Movie S1. Water reaching, side view.  

A side view of a mouse completing a trial of the water reaching task. LEDs are hidden behind the 

water ports from this view angle. 

 

Movie S2. Water reaching, rear view.  

A rear view of a mouse completing three trials of the water reaching task. LEDs can be seen in 

the middle of the screen. Graphics indicate when the LED, Go cue tone (‘Cue’), and water 

dispensation (‘Reward’) occur. Rewards are achieved when the mouse maintains its hand on the 

rung for the duration of the rest period. 
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